Scientists from Oregon Health & Science University are conducting research that could potentially use the DNA from two men to create human embryos.

“New research from Oregon Health & Science University describes the science behind a promising technique to treat infertility by turning a skin cell into an egg that is capable of producing viable embryos,” OHSU writes.

“Researchers at OHSU documented the technique, known as in vitro gametogenesis, or IVG, in a mouse model through preliminary steps that rely upon transferring the nucleus of a skin cell into a donated egg in which the nucleus has been removed. Using mice, the investigators coaxed the skin cell’s nucleus into reducing its chromosomes by half, so that it could then be fertilized by a sperm cell to create a viable embryo,” OHSU continued.

The university states “it also raises the possibility of men in same-sex relationships having children who are genetically related to both parents.”

“The goal is to produce eggs for patients who don’t have their own eggs,” said senior author Shoukhrat Mitalipov, Ph.D., director of the OHSU Center for Embryonic Cell and Gene Therapy, and professor of obstetrics and gynecology, and molecular and cellular biosciences, in the OHSU School of Medicine.

“The technique could be used by women of advanced maternal age or those who are unable to produce viable eggs due to previous treatment for cancer or other causes,” OHSU states.

From OHSU:

Instead of attempting to differentiate induced pluripotent stem cells, or iPSCs, into sperm or egg cells, OHSU researchers are focused on a technique based on somatic cell nuclear transfer, in which a skin cell nucleus is transplanted into a donor egg stripped of its nucleus. In 1996, researchers famously used this technique to clone a sheep in Scotland named Dolly.

In that case, researchers created a clone of one parent.

In contrast, the OHSU study describes the result of a technique that resulted in embryos with chromosomes contributed from both parents. The process involves three steps:

  • Researchers transplant the nucleus of a mouse skin cell into a mouse egg that is stripped of its own nucleus.
  • Prompted by cytoplasm — liquid that fills cells — within the donor egg, the implanted skin cell nucleus discards half of its chromosomes. The process is similar to meiosis, when cells divide to produce mature sperm or egg cells. This is the key step, resulting in a haploid egg, or an egg with a single set of chromosomes.
  • Researchers then fertilize the new egg with sperm, a process called in vitro fertilization. This creates a diploid embryo with two sets of chromosomes — which would ultimately result in healthy offspring with equal genetic contributions from both parents.

OHSU researchers previously demonstrated the proof of concept in a study published in January 2022, but the new study goes further by meticulously sequencing the chromosomes.

The researchers found that the skin cell’s nucleus segregated its chromosomes each time it was implanted in the donor egg. In rare cases, this happened perfectly, with one from each pair of matching egg and sperm chromosomes.

“This publication basically shows how we achieved haploidy,” Mitalipov said. “In the next phase of this research, we will determine how we enhance that pairing so each chromosome pair separates correctly.”

Laboratories around the world are involved in a different IVG technique that involves a time-intensive process of reprogramming skin cells to become iPSCs, and then differentiating them to become eggs or sperm cells.

Read the full study, titled ‘Induction of somatic cell haploidy by premature cell division,’ at Science Advances.

Join The Conversation. Leave a Comment.


We have no tolerance for comments containing violence, racism, profanity, vulgarity, doxing, or discourteous behavior. If a comment is spam, instead of replying to it please click the ∨ icon below and to the right of that comment. Thank you for partnering with us to maintain fruitful conversation.